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Abstract. Static analysis of formal, high-level specifications of safety 
critical software can discover flaws in the specification that would escape 
conventional syntactic and semantic analysis. As an example, specifi- 
cations written in the Requirements State Machine Language (RSML) 
should be checked for consistency: two transitions out of the same state 
that are triggered by the same event should have mutually exclusive 
guarding conditions. The check uses only behavioral information that is 
local to a small set of states and transitions. 
However, since only local behavior is analyzed, information about the 
behavior of the surrounding system is missing. The check may conse- 
quently produce counterexamples for state combinations that are not 
possible when the behavior of the whole system is taken into account. A 
solution is to identify invariants of the global system that can be used to 
exclude the impossible state combinations. Manually deriving invariants 
from designs of realistic size is laborious and error-prone. Finding them 
by mechanically enumerating the state space is computationally infea- 
sible. The challenge is to find approximate methods that can find fewer 
but adequate invariants from abstracted models of specifications. 
We present an algorithm for deriving invariants that are used to ex- 
clude impossible counterexamples resulting from checking consistency of 
transitions in RSML. The algorithm has been implemented in an RSML 
prototype tool and has been applied successfully to the static checking 
of version 6.04a of the (air) Traffic alert and Collision Avoidance System 
(TCAS II) specification. 

1    Introduction 
Formal, high-level specifications of safety critical software are being advocated 
to reveal flaws in software early in the design phase [3,8,10,12]. In contrast to 
informal specifications, formal specifications can be checked for wellformedness 
beyond trivial syntactic properties [1,6,7,11]. For instance, specifications written 
in the Requirements State Machine Language (RSML) [10] should be checked 
to ensure that the specification is consistent [9]: two transitions out of the same 
state that are triggered by the same event should have mutually exclusive guard- 
ing conditions. An inconsistency inadvertently allows for several different imple- 
mentations, which may complicate testing, verification, and reuse of the software. 
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Checking consistency using model checking is infeasible for designs of realistic 
size [6]. Instead, the guarding conditions can be converted into logical predicates 
and checked for mutual exclusion. We have specifically used the Stanford Validity 
Checker (SVC) [2], a decision procedure for a quantifier-free fragment of first- 
order logic [11]. The check is more efficient than model checking, since it uses 
only behavioral information that is local to a small set of states and transitions. 

However, since only local behavior is analyzed, information about the behav- 
ior of the surrounding system is missing. The check may consequently produce 
counterexamples for state combinations that are not possible when the behavior 
of the whole system is taken into account. For example, a purely local check 
may report that two transitions can be enabled simultaneously whenever one 
component state machine is in state si and another is in state s2. However, a 
more global analysis might reveal that this combination of circumstances can 
not occur, indicating that the local check has reported a non-existent problem. 
A solution is to identify invariants of the global state that can be used to exclude 
some of the impossible state combinations. Manually deriving invariants from de- 
signs of realistic size is laborious and error-prone. Finding them by mechanically 
enumerating the state space is computationally infeasible. 

The solution we propose is to find approximate methods that can find fewer 
but still sufficient invariants from abstracted models of specifications. Significant 
size reductions can be achieved by omitting information in the abstraction pro- 
cess. We present an algorithm for deriving invariants that rule out some of the 
impossible counterexamples when checking consistency in RSML. The algorithm 
has been integrated in an RSML prototype analysis tool and has been applied 
successfully to the static checking of part of version 6.04a of the specification of 
the (air) Traffic alert and Collision Avoidance System (TCAS II) [10]. It is likely 
that the algorithm can be generalized to other variations of statecharts [4,5]. 

2    Motivating Example 

We illustrate our approach with an example. An RSML Component State Ma- 
chine (CSM), shown in Figure 1, consists of a set of input variables, a hierarchical 
state machine, and a set of output variables. When an external event arrives at 
the boundary of the CSM, the state machine executes using the values of the 
input variables, assigning new values to the output variables. 

As in statecharts, individual states may themselves contain state machines. 
A state is active if control resides in that state, and inactive otherwise. The 
predicate tn(s) means that state s is active. State Root is of type and, so its 
immediate substates A, B, C, D, and E (outlined by dotted lines) must be 
active simultaneously if Root is active. State A is of type or, so at most one of 
its immediate substates may be active. A basic state has no children. 

A transition is annotated with trigger [guard]/output-event and is taken if 
and only if its guarding condition is true when its trigger event occurs. If taken, 
the transition may generate an output event that triggers other transitions in 
the CSM. The guarding conditions are logical expressions over the values of the 
input variables and the active/inactive status of the states inside the CSM. 
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Fig. 1. An RSML component state machine to be checked for consistency. 

The CSM executes in supersteps. A superstep begins when an external event 
arrives at the boundary of the CSM. The external event begins a chain of inter- 
nally generated events that trigger transitions within the CSM. In our example, 
external event x triggers transitions in states A and D in parallel. If taken, 
these transitions trigger transitions in states B and E. The transition in state B 
may, in turn, trigger transitions in state C, concluding the superstep. The event 
ordering scheme is shown in Figure 2(a). 

Transitions in the CSM are consistent if and only if every pair of transitions 
out of the same state with the same trigger event has guarding conditions that 
can not be enabled simultaneously. For instance, transitions cl-»c2 and cl-»c3 
are inconsistent under the condition in(b2) A in(e2) A tn(a2) A (m > 0) since 
both guarding conditions are satisfied. Thus, the local check indicates that the 
transitions are potentially inconsistent. In such a situation, we say that the 
transitions are locally inconsistent. 
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Fig. 2. (a) Event flow in the CSM. (b) Illustration of source and target completions. 

However, a static analysis of a superstep can show that in(a2) and in(b2) can 
not be true at the same time, invalidating the inconsistency condition. Assume 
that the inconsistency condition holds when the two transitions in state C are 
triggered. Given the event tree in Figure 2(a), this assumption implies the follow- 
ing. First, predicate (m > 0) must be true from the beginning of the superstep 



since it is an input variable. Second, predicate tn(o2) was either true from the 
beginning of the superstep, or it recently became true if transition al->a2 was 
taken. In either case, predicate in(a2) must be true after transitions in state 
A are triggered since this is the last opportunity in which it can be made true 
before transitions in state C are triggered. Similarly, predicate in(e2) must be 
true after transitions in state E are evaluated. 

Finally, predicate in(b2) must be true after state B evaluates. However, a 
stronger claim can be made since the guarding condition of transition bl-+b2 is 
[(m < 0)]. Since predicate (m > 0) must be true from the beginning of the step, 
this transition could not have been enabled and thus predicate in(b2) must also 
have been true from the beginning of the superstep. 

From the upper branch of the event tree in Figure 2(a) we know that tran- 
sitions in state A evaluate before those in B. Therefore, tn(a2) must be true 
when transitions in state B are triggered. But this means that transition b2—»bl 
with guarding condition [m(a2)] is enabled, making 62 no longer active. This 
contradicts the requirement that in(&2) must be true from the beginning of the 
superstep. The inconsistency condition is therefore invalidated, and we derive 
the invariant: (tn(o2) A (m > 0)) => ->in(b2). 

3    RSML 
An RSML specification is a collection of CSMs which communicate through 
asynchronous message passing. Refer to [10] for a comprehensive description of 
the syntax and semantics. We focus on the internal behavior within a CSM and 
introduce concepts used later in the explanation of the approach. 

3.1    Transitions 
The explicit source and destination states of a transition are the states connected 
by the tail and head of the transition arrow. In Figure 2(b), the explicit source 
state and target state of transition *2 are 62 and S2 respectively. 

Due to the hierarchical nature of the states, the explicit source and target 
states may not be the only states that are left and entered on a transition. In 
Figure 2(b), transition t2 not only leaves state 62, it also leaves 51 and all of its 
substates. This is because state SI can not be active when the explicit target 
state 52 is active (they are both children of an or state). Similarly, state 52 is 
not the only state that is entered. 52 is an and state, so states C and D are also 
entered. Since C is an or state and no child state is specified to be the target, 
we enter state c\ by default. Default states are indicated by a transition arrow 
without a source. Likewise, state d\ is entered by default. 

The set of all states that can not be active after taking a transition t is 
denoted source-completion(t) and the set of all states that may become active is 
denoted target-completion(t). Both sets can be determined statically. Informally, 
source-completion(t) is the set of all substates of the highest level state exited 
on the transition, and target-completion{t) is the set of default substates and 
explicitly targeted substates of the highest level state entered. 

Identity transitions may be specified, although they are not shown in the 
CSM diagram. They are taken when no other transition out of the state is 



enabled. By the RSML semantics used in TCAS II, identity transitions do not 
cause any state changes, and their sole purpose is to propagate trigger events. 

3.2    Behavior of the CSM 
A superstep takes the CSM from one global state to the next, where a global 
state is represented by the values of variables and the set of active states in 
the hierarchical state machine. A superstep is decomposed into a series of mi- 
crosteps. A microstep can intuitively be thought of as a wavefront of transitions 
that are taken concurrently, in an arbitrary interleaving. The transitions in each 
microstep generate the set of events that trigger the transitions in the subsequent 
microstep. Transitions in a microstep are evaluated only after all transitions in 
the preceding microstep have been evaluated. An external trigger event from 
the environment begins the first microstep. The superstep ends when there is a 
microstep in which no more transitions are triggered. 

4 Overview of the Algorithm 
Given a local inconsistency condition, we look for an invariant that shows that 
the condition is unsatisfiable. Since this condition is a conjunction of predicates, 
it suffices to show that at least one predicate fails to hold, given the others. 

First, the behavior of the CSM is abstracted, resulting in a model delineating 
which transitions can be triggered at each microstep. In Backward Pass, we begin 
by assuming that the local inconsistency condition holds at the last microstep 
(the microstep in which the locally inconsistent transitions are triggered). We 
then determine the earliest microstep from which each predicate must hold if it is 
to hold at the last microstep. In Forward Pass, we try to establish a contradiction 
by showing that some predicate in the inconsistency condition can not hold in the 
last microstep given other predicates determined to hold from prior microsteps. 
An invariant is formulated from the results of the analysis. 

5 The Causality Model 
The behavior of the CSM is abstracted as a model called the causality tree that 
delineates which transitions can be triggered at each microstep. Figure 3a is the 
causality tree for the superstep initiated by external event x in the CSM from 
Section 2. A node in the tree represents a set of transitions with the same input 
and output triggers. The directed edge into a node represents the trigger event 
to transitions associated with the node, and the directed edge out of the node 
represents the output event (possibly empty). 

Beginning with the external trigger event from the environment node, we 
add nodes containing transitions triggered by the event. These new nodes may 
have their own output triggers which become directed edges to subsequent nodes 
with transitions triggered by them. Nodes are added until all leaves of the tree 
have the empty output trigger. Circularities in the event propagation are not 
allowed, since they lead to infinite paths in the causality tree. The algorithm 
trivially checks for circularities each time a new node is added, and aborts the 
tree construction if a circularity is detected. 
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Fig. 3. Causality tree for the CSM in Figure 1. 

The depth of a node in the tree denotes the microstep number in which 
its transitions may be triggered. Hence, grouping all of the nodes in the tree by 
their depth effectively determines the set of those and only those transitions that 
can be triggered in each microstep. Transitions in states B and E, for instance, 
may be triggered simultaneously in microstep 2. Note that the causality tree is a 
conservative model: it captures what events may be generated at each microstep, 
without information about whether guarding conditions are enabled. Identity 
transitions are not included in the model since they are not important to our 
analysis. However, they must be considered in the construction of the tree since 
they also have output events. 

A causality path is a path in the tree from the environment node to the node 
with the locally inconsistent transitions. Every trigger in this path must fire if 
the locally inconsistent transitions are to be triggered. In Figure 3, there is only 
one causality path to transitions in state C, the upper branch. All causality 
paths to the node with the locally inconsistent transitions in every causality 
tree must be checked. The Backward Pass and the Forward Pass stages of the 
algorithm analyze each causality path separately in the context of the causality 
tree in which it resides. 

6    Backward Pass: Predicate Positioning 
Backward Pass begins by assuming that the inconsistency condition holds in the 
last microstep of the causality path in which the locally inconsistent transitions 
are triggered. It then determines the earliest microstep from which each predicate 
must hold if it is to hold at the last microstep. Let V be the set of predicates 
in the local inconsistency condition. In our running example from Section 2, the 
transitions cl—K:2 and cl—»c3 have guarding conditions that are both enabled 
under in{b2) A in(e2) A tn(o2) A (m > 0) so V= {in(b2), m(e2), m(a2), (m > 0)}. 

Before proceeding, we introduce the notion of a suspect transition. A transi- 
tion t is suspect if and only if it can cause a predicate p to become true. 

Suspectit v) = lS(E tar9^-completian(t) 
y     '     \ s € 80urce-completion(t) 

if p — in(s) 
if p = -un(s) 

For a given predicate, we define its microstep assignment to be the microstep 
after which it can safely be assumed to be true if it is true at the last microstep. 
Each predicate is initially assigned to the last microstep. Backward pass then 
assigns each predicate p to the first preceding microstep that contains a suspect 
transition. If no suspect transition exists, p is assigned to microstep zero. This 
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Fig. 4. The solid black lines show the result after the initial predicate assignments. The 
dotted line illustrates the reassignment of predicate in(62) to a previous microstep. 

is a sound process since a predicate's truth value can only change at a microstep 
that contains a suspect transition. 

The solid black lines in Figure 4 show the state after all of the predicates 
have been assigned. Predicate »n(a2) is assigned to microstep 1 since transition 
al->a2 is suspect. Hence, in(a2) can safely be assumed to be true in microsteps 
2 and 3. Predicate t'n(&2) can become true in microstep 2, so it can only be safely 
asserted in microstep 3. Likewise, predicate tn(e2) is assigned to microstep 2. 
Predicate (m > 0) involves an input variable so it must have been true from the 
beginning of the superstep (microstep zero). 

Next, we determine whether predicates can be reassigned to earlier mi- 
crosteps. A predicate p is reassigned if all suspect transitions in its currently 
assigned microstep have guarding conditions that are unsatisfiable in the con- 
text of predicates assigned to previous microsteps. In such a case, p must have 
become true in an earlier microstep. It is thus reassigned to the next preceding 
microstep with a suspect transition. The reassignment of predicates is an itera- 
tive process since a reassignment may affect the microstep assignments of other 
predicates. This process is guaranteed to terminate since the number of preced- 
ing microsteps is finite and predicates can only be moved in one direction. The 
dotted line in Figure 4 shows the reassignment step. Predicate in(b2) can be re- 
assigned because the suspect transition bl-»b2 has guarding condition [(m < 0)] 
which is negated by predicate (m > 0) assigned to a previous microstep. 

Note that backward pass conservatively considers all of the nodes in the entire 
causality tree at each microstep, and not only the transitions triggered in the 
node in the causality path. In Figure 4, for instance, m(e2) would be assigned 
to microstep zero if we do not consider nodes outside the causality path. This is 
not sound since transition el—>e2 may have made it true. 

7    Forward Pass: Deriving a Contradiction 
In the Forward Pass stage, we try to derive a contradiction based on the predicate 
assignments. Beginning with the first microstep, we look for transitions that (1) 
must be taken, and (2) falsify a predicate that was determined to be true at 
that microstep in the backward pass stage. We will refer to such transitions as 
violating transitions. 
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Fig. 5. Illustration of the Forward Pass stage. Predicate in(a2) enables a transition 
from state 62 to 61 violating predicate in(62). (Although transition dl—>-d2 is not ex- 
plicitly in the causality path, it is still considered since it is triggered by an event in 
the path.) 

Unlike backward pass which examines the entire causality tree, forward pass 
looks only at the causality path and analyzes transitions triggered by trigger 
events in the path. This is because all trigger events in the causality path must 
fire in order for the locally inconsistent transitions to be ultimately triggered, 
and hence these are the only events that we can safely assume to have occurred. 

The procedure for forward pass begins at microstep one and executes the 
following steps for each subsequent microstep: 

1. Construct set MustHold that consists of all of the predicates assigned to pre- 
vious microsteps. These predicates must be true in the current microstep in 
order for the local inconsistency condition to be valid. In Figure 5, MustHold 
for microstep 2 is {(m > 0), tn(&2), in(a2)}. 

2. Construct set EnabledT that consists of transitions triggered in the current 
microstep of the causality path and whose guarding conditions are enabled 
by asserting predicates in MustHold. In Figure 5, EnabledT for microstep 2 
is {b2-»bl} since this transition has guarding condition [in(a2)]. 

3. For each p € MustHold do 
- If p is of type tn(s): If there exists a transition t in EnabledT such that 

(1) the predicates in MustHold imply that we are in the source state of 
t, and (2) s is a member of source-completion(t), then report violation. 

- If p is of type ->»n(s): If (1) predicates in MustHold imply that we are 
in the parent state p of s and (2) EnabledT contains transitions from all 
child states of p other than s back to s, then report violation. 

Note that if p is of type -iin(s), the fact that p, the parent state of s, is 
active guarantees that some child state of p other than s is active. Since we 
do not know which child state is active, we must ensure that there are enabled 
transitions from all child states of p other than s back to s. 

In microstep 2 of Figure 5, transition b2-»bl must be taken since (1) predi- 
cate in(b2) assigned to microstep 0 implies that we are in the source state of the 
transition, and (2) the guarding condition of the transition is satisfied by predi- 
cate in(a2) assigned to microstep 1. Transition b2-»bl causes 62 to be inactive 
in microstep 3. This invalidates the local inconsistency condition. The constraint 
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we can derive for this causality path is [m(o2) A (ro > 0)] =£- -<in(b2). Predicate 
(m > 0) is included in the constraint only because it contributes to the reas- 
signment of the violated predicate in(b2). We have thus proven by contradiction 
that the local inconsistency condition can not hold for this causality path. 

8 Deriving the Invariant 
Since we must consider all causality paths to the locally inconsistent transitions, 
a violation must be found for each path. Otherwise, no invariant can be safely 
formulated. Suppose we have the following violation constraints for n causality 
paths: (Pi =>■ -ipi,P2 => ->P2,—,Pn =» ~'Pn), where Pi denotes the conjunction 
of predicates which once asserted, guarantees the negation of predicate pt for 
the ith causality path. The invariant is then the disjunction of the n violation 
constraints: (Pi A P2 A... A Pn) =» (-ipi V -^p? V... V -^pn). This invariant applies 
only when the trigger event to the locally inconsistent transitions occurs. 

9 Application to TCAS II 
Our method was applied to a part of the TCAS II ([air] Traffic alert and 
Collision Avoidance System) specification version 6.04A written in RSML. It 
was used to supplement consistency checking in the Collision Avoidance Sub- 
system (CAS). CAS models intruding aircraft and classifies them as one of 
Threat, Potential-Threat, Proximate-Traffic, or Other-Traffic. Figure 6 shows 
a part of CAS that models the intruding aircraft. The transition bar in state 
Intruder-Status is shorthand notation for transitions between any two states. 
State Other-AirStatus models the intruding aircraft as either being close to the 
ground (state On-Ground), or airborne (hence more of a threat). 

Using the Stanford Validity Checker (SVC), we discovered a local inconsis- 
tency condition for transitions Proximate-Traffic to Potential-Threat and 
Proximate-Traffic to Other-Traffic. It includes, in part, the predicates 
in(On-Ground) and ->Other-Alt-Reporting. This means that the intruding air- 
craft is not reporting altitude but it is classified as being close to the ground. 

By applying the analysis described in this paper, our tool generated the 
invariant -1 OtherJilt-Reporting =*■ ->in(On-Ground). This invariant, as well as 
another one that was critical in consistency checking the specification, were 
found in no more than two seconds using our prototype tool written in LISP. 
However, the runtime is an underestimate since we did not fully expand all 
causality trees; the entire specification was not available in an electronic format. 
The parts that were left unspecified were nevertheless determined to be irrelevant 
to our analysis. 



10    Discussion 
We analyze a conservative approximation of the execution that statically de- 
termines all possible changes that can occur in the system at any given time 
with any given input. Since the approximation has less information than the 
original specification, we may overlook properties that are in fact true of the 
specification. On the other hand, the limited size of the approximation makes it 
computationally feasible to analyze. The algorithm has been integrated into a 
general consistency checking prototype tool. We expect to extend it with other 
static analysis tools as they become available. 
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